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Abstract

Survey strategies for upcoming exoplanet direct imaging missions have considered varying assumptions of prior
knowledge. Precursor radial velocity surveys could have detected nearby exo-Earths and provided prior orbit and
mass constraints. Alternatively, a direct imaging mission performing astrometry could yield constraints on the orbit
and phase angle of target planets. Understanding the impact of prior mass and orbit information on planetary
characterization is crucial for efficiently recognizing habitable exoplanets. To address this question, we use a
reflected-light retrieval tool to infer the atmospheric and bulk properties of directly imaged Earth-analogs while
considering varying levels of prior information and signal-to-noise ratio (S/N). Because of the strong correlation
between the orbit-related parameters and the planetary radius, prior information on the orbital distance and
planetary phase angle yield much tighter constraints on the planetary radius: from = -

+
ÅR R2.95p 1.95

2.69 without prior
knowledge, to = -

+
ÅR R1.01p 0.19

0.33 with prior determination of the orbit for S/N= 20 in the visible/near-infrared
spectral range, thus allowing size determination from reflected light observations. However, additional knowledge
of planet mass does not notably enhance radius ( = -

+
ÅR R0.98p 0.14

0.17 ) or atmospheric characterization. Also, prior
knowledge of the mass alone does not yield a tight radius constraint ( = -

+
ÅR R1.64p 0.80

1.29 ) nor improves atmospheric
composition inference. By contrast, because of its sensitivity to gas column abundance, detecting a Rayleigh
scattering slope or bounding Rayleigh opacity helps to refine gas mixing ratio inferences without requiring prior
mass knowledge. Overall, apart from radius determination, increasing the S/N is more beneficial than additional
prior observations.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Direct imaging (387); Exoplanet atmospheres (487);
Astrobiology (74); Biosignatures (2018); Bayesian statistics (1900); Habitable planets (695)

1. Introduction

The discovery and characterization of habitable exoplanets
(i.e., planets that can maintain stable liquid water on their
surface; e.g., Kasting et al. 1993) has been defined as one of the
leading decadal goals for astronomy, planetary science, and
astrobiology (National Academies of Sciences, Engineering, &
Medicine 2023a, 2023b). The so-called Habitable Worlds
Observatory (HWO) mission concept is being developed by
NASA to help achieve this profound goal. Importantly, HWO
builds on the successes of earlier space-based direct imaging
concept missions, such as the Habitable Exoplanet Observatory
(HabEx; Gaudi et al. 2018, 2020) and the Large Ultraviolet/
Optical/Infrared Surveyor (LUVOIR; Roberge & Moustakas
2018; The LUVOIR Team 2019). A coronagraph demonstration
as part of the soon-to-launch NASA Nancy Grace Roman Space
Telescope will also provide key insights into space-based
exoplanet high-contrast imaging techniques (Akeson et al. 2019;
Mennesson et al. 2020).

Leveraging recent advances in coronagraph (Trauger &
Traub 2007) or starshade (Harness et al. 2021) starlight
suppression techniques, HWO is expected to achieve sufficient

planet–star flux contrast for exo-Earth direct imaging (below
∼10−10 in the visible for an Earth-like planet orbiting a Sun-
like star at 1 au; e.g., Guyon et al. 2006; Seager & Deming
2010). Compared to transit spectroscopy, HWO reflected light
observation capabilities will probe planets with larger orbital
separations from the star and smaller planet-to-star radius ratios
(e.g., Madhusudhan 2019). It will also be sensitive to deeper
atmospheric layers (up to the surface or the pressure at which
aerosols become optically thick; Morley et al. 2015) and even
surface conditions (including the detection of oceans’ glint;
Williams & Gaidos 2008; Robinson et al. 2010). Yet,
observations will remain challenging to interpret, and retrieving
the atmospheric and surface properties encoded in noisy
reflected light spectra will not be straightforward. First and
obviously, technical limitations exist (e.g., Juanola-Parramon
et al. 2022); the instrument performance and the observation
time restrict the spectral coverage and signal-to-noise ratio
(S/N) needed to sense spectral signatures (e.g., Feng et al.
2018; Konrad et al. 2022; Damiano & Hu 2022; Alei et al.
2022a; Robinson & Salvador 2023; Susemiehl et al. 2023;
Latouf et al. 2023a, 2023b; Young et al. 2024). Then, spectral
interpretation is challenged by the complexity and our
understanding of atmospheric processes (e.g., Seager &
Deming 2010), necessarily modeled via simplified parameter-
izations (e.g., Fortney et al. 2021; Alei et al. 2022b), and the
extremely large range of unconstrained parameters (e.g.,
Madhusudhan 2018). In addition, many degeneracies exist
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between these parameters, and disentangling their respective
influence is difficult (e.g., Benneke & Seager 2013; Lupu et al.
2016; Nayak et al. 2017; Welbanks & Madhusudhan 2019;
Wang et al. 2022). Indeed, solutions are not unique and many
combinations of parameters corresponding to different atmo-
spheric states may satisfactorily reproduce a given observed
spectrum.

Some of these observational and theoretical shortcomings
are addressed by atmospheric retrieval models, that are used
to infer the free/unknown parameters that best reproduce/
explain current or future noisy exoplanet observations (e.g.,
Madhusudhan 2018). Recently, and as jointly done for
transmission (e.g., Benneke & Seager 2012; Greene et al.
2016; Lustig-Yaeger et al. 2023) and emission spectroscopy
(e.g., von Paris et al. 2013; Konrad et al. 2022; Alei et al.
2022a; Mettler et al. 2024), several retrieval studies have
assessed the science returns associated with future direct
imaging mission designs targeting planets from gas giants and
icy planets (Lupu et al. 2016; Nayak et al. 2017; Lacy et al. 2019;
Damiano & Hu 2020; Carrión-González et al. 2020; Damiano
et al. 2020; Carrión-González et al. 2021; Damiano & Hu 2021;
Susemiehl et al. 2023) to rocky planets (Feng et al. 2018; Smith
et al. 2020; Damiano & Hu 2022; Robinson & Salvador 2023;
Susemiehl et al. 2023; Damiano et al. 2023; Latouf et al. 2023a,
2023b; Young et al. 2024). In particular, they provide the
requirements—in terms of spectral coverage, resolution, and
S/N—to confidently identify selected atmospheric and surface
properties. Thus, atmospheric retrieval modeling can connect
our understanding of how well a direct imaging mission
can characterize exoplanetary atmospheres to the underlying
observational performance delivered by a mission architecture.

Despite these efforts, the most efficient path to characterizing
worlds in reflected light is uncertain, especially with regard to
the role of prior observations. Importantly, it has been stated
that “knowledge of a planetʼs mass (along with a knowledge of
its radius) is essential [...] to interpret spectroscopic features in
its atmosphere” (National Academies of Sciences Engineering
& Medicine 2018). Yet, this assumption has never been
confirmed with retrieval models, nor the values of prior mass
knowledge quantitatively assessed. Extreme precision radial
velocity (EPRV) could provide prior detections of exo-Earths,
which changes the demands on any discovery survey (Stark
et al. 2019; Dulz et al. 2020; Morgan et al. 2021) while yielding
orbit and (minimum) mass measurements (e.g., Lovis et al.
2010; Plavchan et al. 2015). Without EPRV, discovery and
characterization require multiple photometric visits, to first find
and select the most promising targets for a follow-up in-depth
characterization campaign (e.g., Figure 1.5 from The LUVOIR
Team 2019). In such a case, the orbit would be determined
early to ensure a planet is in its host star’s habitable zone.
Alternatively, particularly exciting targets could get marked for
spectral observations even before full orbit fits are achieved.
Thus, it is important to understand how atmospheric
characterization is influenced by prior knowledge of the orbit
and/or mass.

Here, we investigate how orbit-related and mass prior
information will affect our ability to retrieve other atmospheric
and planetary properties and help exoplanet characterization. In
Section 2, we describe the retrieval framework and scenarios
we considered. Our results showcasing how different levels of
prior information at various S/Ns can improve exoplanet

characterization are presented in Section 3. The main
conclusions are summarized in Section 4.

2. Methods

We use the rfast atmospheric retrieval suite (Robinson &
Salvador 2023) to assess how prior knowledge of the orbit and
mass influence the characterization of an Earth-like exoplanet
observed with a typical HWO setup. The model consists of
several interconnected tools. First, a radiative transfer
“forward” model that generates a synthetic high-resolution
spectrum of a planet of known (fiducial) properties. An
instrument model then degrades the spectral resolution and
adds noise to mimic the “faux observation” for a given
instrument/telescope design. A Bayesian sampling tool
(emcee; Foreman-Mackey et al. 2013) then explores the
parameter space of all unknown atmospheric and planetary
parameters adopted to fit the faux observation. The set of fit
parameters is fed to the forward model that generates the
corresponding high-resolution spectrum, which is degraded via
the instrument model to match the resolution of the simulated
data. The likelihood of the generated spectrum to reproduce the
faux observations is computed using the standard definition of
chi-squared (χ2) while the posterior probability informs how
the parameter space should be further explored and is computed
via Bayes’ theorem. After a burn-in period, the walker
positions map the posterior probability distribution. This
distribution quantifies which parameter values are most likely
to reproduce the simulated observation. Combined with any
biases away from the input parameters, this reveals how
effectively (or ineffectively) HWO observations could con-
strain key properties of a directly imaged world. Forward and
inverse model validations for rfast are presented in
Robinson & Salvador (2023).
In high-contrast imaging, the light from the host star that is

reflected by the planet is resolved from its bright host as a
distinct point source, such that the exoplanet itself is directly
imaged. At a given planet–star–observer phase angle, α, the
relevant measure is the wavelength-dependent planet-to-star
flux ratio:

⎛
⎝

⎞
⎠

a= F
F

F
A

R

a
, 1

p

s
g

p
2

( ) ( )

where Ag is the geometric albedo, Φ is the phase function
(which depends on the phase angle), Rp is the radius of the
planet, and a is the orbital distance. While the planet–star
angular separation, the host star apparent magnitude, the
exozodiacal dust brightness, and other parameters impact the
feasibility of the observation, the planet-to-star flux ratio
roughly sets the contrast that must be achieved to image the
planet. To account for the dependence of the reflected light
spectrum on the planetary phase, we use rfast 3D mode. The
planet is then treated as a homogeneous pixelated globe, where
radiative transfer is computed for each pixel following a local
plane-parallel assumption. The plane-parallel facets then have
different pairs of incidence and emergence angles, depending
on the illumination geometry. The total emergent flux from the
planet (i.e., from the spatially integrated disk) composed of these
many plane-parallel facets is obtained using a Gauss–Chebyshev
integration following Horak & Little (1965; see Robinson &
Salvador 2023, for more details).
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Because our focus is on the characterization of Earth-like
habitable planets with future direct imaging mission concepts,
we simulated the reflected light spectrum of the best
characterized habitable planet: Earth. Our fiducial parameter
values used to generate these synthetic observations are given
in Table 1, where the atmosphere is made primarily of nitrogen
(78%) and oxygen (21%), with water vapor, carbon dioxide,
methane, ozone, and argon as additional trace species. The
Earth analog simulated spectrum is passed to a simple
instrument model (Robinson et al. 2016) to mimic observations
relevant to HWO (Figure 1).

The rfast inverse tool has been designed for the rapid
exploration of many atmospheric and planetary parameters
without being computationally prohibitive. Here we retrieved
on 17 parameters (listed in Table 1 with the input value and
prior range considered) whose contributions are encoded in the
spectrum. The surface conditions are described via the surface
pressure (psurf), the isothermal atmospheric temperature (T),
and the gray surface albedo (Asurf). The atmospheric
composition is set by the gas abundances of N2, O2, H2O,
CO2, CH4, and O3 (expressed in terms of atmospheric volume
mixing ratios, f ), where argon fulfills the rest of the atmosphere
when the sum of their volume mixing ratios is lower than one.
The properties of clouds are captured by their top pressure (pc),
thickness (Δpc), optical depth (τc), and the cloudiness fraction
( fc). The planetary bulk parameters are the planet radius (Rp)
and mass (Mp). Finally, the orbit-related parameters are the
orbital distance (a) and the planet–star–observer phase angle
(α). emcee was run with 15 Markov Chain Monte Carlo

chains (walkers) per parameter (for a total of 255 walkers). For
each case, we let emcee explore the parameter space for
100,000 steps. Sensitivity studies conducted while developing
rfast demonstrated that the chains have then fully converged
for all retrieved parameters (Robinson & Salvador 2023).
Drawing the posterior distributions from the last 5000 steps
gives a sufficiently large sample to be statistically representa-
tive without being computationally prohibitive. It also
maintains consistency with Feng et al. (2018) and Robinson
& Salvador (2023) and ensures that the walkers have properly
explored the parameter space and forgotten their initial
position.
To assess the influence of orbital and mass prior information

on exoplanet characterization, we consider three different
retrieval scenarios associated with different levels of prior
constraints: (1) “no prior constraint,” i.e., none of the retrieved
parameters is known a priori; (2) “known orbit,” where a prior
determination of the orbit of the planet would give constraints
on the orbital distance (a) and planetary phase angle (α) at the
time of observation such that these are constrained to 10% of
Earth’s value (consistent with HabEx/LUVOIR/HWO astro-
metry target performance; e.g., Guyon et al. 2013; Horning
et al. 2019; The LUVOIR Team 2019; Gaudi et al. 2020); (3)
“known orbit and mass,” where both the orbit-related
parameters (a, α) and the mass of the planet (Mp) have been
previously informed and are all constrained to 10% of Earth’s
value (consistent with predicted precision radial velocity
semiamplitude uncertainties of 10%; Plavchan et al. 2015).
An additional “mass constrained” case, where only the mass is

Table 1
Retrieved Parameters, Corresponding Description, Earth-based Fiducial Input Value, and Prior Ranges

Parameter Description Input Flat Prior Gaussian Priorc

Surface Conditions
log psurf Surface pressure (Pa) log(105) [0, 8] L
T Atmospheric temperaturea (K) 255 [100, 1000] L
log Asurf Surface albedo log(0.05) [−2, 0] L

Gas Abundancesb

log fN2
Molecular nitrogen mixing ratio log(0.78) [−10, 0] L

log fO2
Molecular oxygen mixing ratio log(0.21) [−10, 0] L

log fH O2
Water vapor mixing ratio log(3×10−3) [−10, 0] L

log fCO2
Carbon dioxide mixing ratio log(4×10−4) [−10, 0] L

log fCH4
Methane mixing ration log(2×10−6) [−10, 0] L

log fO3
Ozone mixing ratio log(7×10−7) [−10, −2] L

Cloud Parameters
log pc Cloud-top pressure (Pa) log(6×104) [0, 8] L
log Δpc Cloud thickness (Pa) log(104) [0, 8] L
log τc Cloud optical depth log(10) [−3, 3] L
log fc Cloudiness fraction log(0.5) [−3, 0] L

Planetary Bulk Parameters
log Rp Planet radius (R⊕) log(1) [−1, 1] L
log Mp Planet mass (M⊕) log(1) [−1, 2] {1, 0.1}

Orbital Parameters
a Planetary orbital distance (au) 1 [0.1, 10] {1, 0.1}
α Planetary phase angle (°) 90 [0, 180] {90, 9}

Notes.
a Isothermal atmosphere temperature.
b The remaining atmosphere is backfilled with argon.
c Parameters constrained to 10% of Earth’s value when considering prior observations. The prior distribution is then a Gaussian {μ, σ} of mean μ centered on Earth’s
value, with a standard deviation σ of 10% the truth value.
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constrained by prior information, is also shown for a single
value of S/N (20) and our baseline spectral coverage (visible/
near-infrared; vNIR) to isolate the influence of mass prior
determination. Priors are taken as Gaussian constraints. The
“known orbit” case models a scenario where the observatory
has used earlier observations to help astrometrically constrain
the orbit, while the “known orbit and mass” case mimics a
scenario where precision radial velocity or astrometric data has
obtained an earlier mass determination. Note that none of the
scenarios assume any specific mass–radius relationship.
Adopting such a relationship as a prior could help to further
limit the allowable phase space.

Our instrument model reproduces the observational capabil-
ities of a typical HWO setup operating in the “vNIR” spectral
range: an optimistic combination of “visible” (λ= [0.45, 1] μm,
with a spectral resolving power l dl= =res 140) and near-
infrared (NIR; λ= [1, 1.80] μm, =res 70) wavelengths (as
could be obtained with multiple starshades and/or
coronagraph pointings; Figure 1). While it seems reasonable to
expect observations spanning the full vNIR bandpass to
maximize the yield at the stage of detailed exoplanet
characterization, we also tested how our results would apply
to observations conducted in a “red” (λ= [0.87, 1.05] μm,

=res 140) coronagraph-restricted bandpass including the
prominent 0.94 μm H2O absorption feature (Figure 1).

For the vNIR baseline spectral coverage, we consider a
constant, nonrandomized, gray (i.e., wavelength-independent)
noise for three different S/N values (10, 15, and 20) to account
for different data quality without being restricted to specific
observing parameters such as telescope diameter or target
distance (compared to integration times; see Feng et al. 2018).
Note that for a constant noise, the S/N goes down within
spectral features. The S/N values of 10, 15, or 20 refer to the
S/N set at λ= 0.45 μm, which is then propagated across the
entire spectral coverage while maintaining a constant error
bar size. For the pessimistic red bandpass test, we consider
S/N= 10 only (specified at 0.88 μm). This nonrandomized
(i.e., the error bars are simply centered on truth/noise-free
values), wavelength-independent noise model follows the
approach described in Feng et al. (2018) for their initial
validation. Feng et al. (2018) demonstrated that for a statistical
sampling of retrievals, a more realistic, randomized noise
would yield similar inference results. Furthermore, a constant
noise aligns with the predicted performance of the HabEx and
LUVOIR missions, assuming equal exposure times across their
UV, optical, and NIR spectral bands (The LUVOIR Team
2019; Gaudi et al. 2020). The gray noise approach also enables
easier reproducibility, as the wavelength-dependent noise need
not be specified. Note that we will specifically address the
influence of the data quality (both in terms of spectral coverage

Figure 1. Fiducial-model-generated (synthetic) reflected light spectrum of an Earth-like planet at quadrature (i.e., at a planetary phase angle α = 90°; see Table 1 for
fiducial input values). The colored areas indicate the spectral impact of the gas species by showing the difference between the baseline spectrum (black line) and the
spectrum obtained if they were absent from the atmosphere. The top of the figure shows the two wavelength ranges considered and their spectral resolving power: red
bandpass (λ = [0.87, 1.05] μm, =res 140; see Appendix B) and visible (λ = [0.45, 1] μm, =res 140) + NIR (λ = [1, 1.80] μm, =res 70). The error bars show the
nonrandomized, wavelength-independent noise corresponding to specific S/N at the reference wavelengths λ = 0.45 μm for the vNIR range, and λ = 0.88 μm for the
red bandpass.
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and S/N) on atmospheric retrievals and in determining the best
observing strategy in another dedicated study.

Considering the different levels of prior information and the
variations in S/N and spectral coverage, we ran a total of 13
retrieval scenarios and discuss how these scenarios allow us to
infer the properties of an observed Earth analog in the next
section.

3. Results and Discussion

The material below details the value of different types of
prior information. First, we explore the impact of priors on
determinations of the planetary radius. Next, we highlight how
the inference of key parameters is influenced by prior
information versus increasing the S/N.

3.1. Planet Radius Determination

Figure 2 illustrates the degenerate relationship between
increasing orbital distance and increasing planetary radius in
yielding an equivalent amount of reflected light. Indeed,
because the flux received (and reflected) by a planet increases
with decreasing the orbital distance and with increasing the

planet radius, a larger planet orbiting further away from its host
star may essentially reflect the same amount of light as a
smaller planet but closer to the star. This correlation follows
directly from the ratio of planetary size to orbital distance in
Equation (1). More subtly, Nayak et al. (2017) showed that a
similar degenerate relationship exists between the planet phase
and radius. Increasing the planet radius may reflect essentially
the same amount of light and compensates for a decreasing
planet phase (increasing phase angle). Because the geometric
albedo (Ag) and the phase function (Φ) are physically bound via
optical scattering and absorption, measuring the planet-to-star
flux ratio while knowing the planetary phase angle and the
orbital distance would then ultimately enable inferences of the
planet radius (Equation (1)).
A prior determination of the orbit would give constraints on

the orbital distance and planetary phase angle at the time of
observation. Thus, in such a case, the planet radius required to
match the amount of reflected light becomes tightly constrained
(orange area in Figure 2). Figure 3 shows posterior constraints
on the planetary radius and type as a function of the prior
information available for vNIR at S/N= 20 and clearly
illustrates this behavior. Without any prior knowledge on the

Figure 2. Orbital distance and planet radius joint/bivariate (center) and marginal/univariate (top and right side) posterior distributions for different scenarios of prior
knowledge and for the vNIR and S/N = 20. The contours of the 2D posterior distributions denote the 1σ, 2σ, and 3σ levels, encompassing 68%, 95%, and 99.7% of
the observed values, respectively (note that the relevant 1σ, 2σ, and 3σ levels for a 2D distribution of samples are 39.3%, 86.5%, and 98.9% of the volume, and
correspond to the 68%, 95%, and 99.7% for 1D distributions). Earth-like input values are depicted with dashed horizontal and vertical lines. The small image of Earth
indicates its position in the diagram. The sketch illustrates the degenerate relationship between increasing orbital distance and increasing planet radius, in yielding an
equivalent amount of reflected light. A larger planet orbiting further away from its host star may essentially reflect the same amount of light as a smaller planet but
closer to the star. As a result, if the orbit-related parameters are known or constrained, the range of planet radius yielding the same amount of reflected light is
necessarily restricted. Retrieval results are given in Table 2.
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retrieved parameters (blue areas in Figure 3), and without any
mass–radius relationship assumed, the full prior range for the
planet radius is explored ( =Å -

+R Rlog 0.47p 0.47
0.28, i.e., the radius

is confidently constrained to be within 0.99 and 5.63 R⊕ for the
1σ or 68% credible interval), meaning that any radius may
satisfactorily reproduce the observed spectrum. As seen from the
marginal posterior distribution that weakly peaks above
Neptune-sized planets ( = =Å ÅR R R3.865 0.587 log♆ ), large
planets could be mistakenly favored over Earth-sized planets.

Because of the orbit–radius correlation, prior knowledge of
the orbit significantly restricts the range of likely radius, i.e.,
reproducing the observations, yielding accurate radius
determination. The radius is confidently constrained to be
between 0.81 and 1.34 Earth radius ( =Å -

+R Rlog 0.00p 0.09
0.12 for

the 1σ or 68% credible interval). The planet is then properly
and without ambiguity identified as an Earth-sized planet. Prior
knowledge of the orbit also yields a tight radius characteriza-
tion in all retrieval scenarios conducted, including for different
S/N values in the vNIR bandpass (Figure 4). Even for a
reduced red bandpass (λ= [0.87, 1.05] μm, with a spectral
resolving power res= 140; see Figure 1) and a S/N= 10
(specified at λ= 0.88 μm), the planet radius is confidently
constrained to be between 0.63 and 1.73 Earth radius when the
orbit is already determined ( = -Å -

+R Rlog 0.02p 0.19
0.25 for the

68% confidence interval, corresponding to = -
+

ÅR R0.96p 0.33
0.77 ),

while it is unconstrained ( = -
+

ÅR R2.77p 1.91
3.37 ) without prior

knowledge (see Figure 6 and Table 5 in Appendix B).
Importantly, it shows that these results are not strongly
dependent on the wavelength coverage or S/N considered.
Note that characterizing the radius this way would reduce
important degeneracies involving it and thus help constrain
other parameters (Carrión-González et al. 2020).
Because of the already tight constraints on the radius, the

mass prior, added to the orbit-related priors, does not offer
substantial improvements on the planetary radius constraint,
neither for observations in the vNIR ( = -Å -

+R Rlog 0.01p 0.07
0.07,

corresponding to = -
+

ÅR R0.98 ;p 0.14
0.17 see Figure 3) nor in the

red bandpass ( = -Å -
+R Rlog 0.03p 0.16

0.23, corresponding to
= -

+
ÅR R0.93 ;p 0.29

0.67 see Figure 6 in Appendix B). However,
such mass information could prove valuable when attempting
to holistically understand the world, as the added mass
information helps to constrain bulk properties like density.
Here, with both orbit-related and mass priors, the planet is
unequivocally identified as rocky. However, results where only
the mass is constrained by prior information (red areas in
Figures 3 and 4, and Table 2) indicate that knowing only the
planet mass would not be sufficient to firmly constrain the

Figure 3. Mass–radius diagram (center) and marginal univariate posterior distributions (top and right side) for the different scenarios of prior knowledge and for the
vNIR and S/N = 20 case. The contours of the 2D posterior distributions denote the 1σ, 2σ, and 3σ levels, encompassing 68%, 95%, and 99.7% of the observed
values, respectively. Earth-like input values are depicted with dashed horizontal and vertical lines. The small images of Earth and Neptune indicate their positions in
the diagram. For comparison, mass–radius relationships representative of different bulk compositions and interior structures are shown (pure H2O assuming 1 mbar
surface pressure level at 300 K, Earth-like rocky: 32.5% Fe + 67.5% MgSiO3, and pure iron; from Zeng et al. 2019 (https://lweb.cfa.harvard.edu/~lzeng/
planetmodels.html#mrrelation). Retrieval results are given in Table 2.

6

The Astrophysical Journal Letters, 969:L22 (14pp), 2024 July 1 Salvador et al.

https://lweb.cfa.harvard.edu/~lzeng/planetmodels.html#mrrelation
https://lweb.cfa.harvard.edu/~lzeng/planetmodels.html#mrrelation


Figure 4. Planet radius (Rp), water vapor mixing ratio ( fH O2
), surface pressure (psurf), and cloud fraction ( fc) posterior distributions for the different levels of color-

coded prior knowledge, at different S/N values (10, 15, and 20) in the vNIR. The “mass constrained” case (i.e., where only the mass is constrained; in red) is shown
for S/N = 20 only. Earth-like input values are depicted with dashed horizontal lines. The density has been normalized across all kernel density plots such that each
have the same area. Apart from the planet radius inference, which is significantly improved by prior knowledge of the orbit, increasing the S/N is more beneficial for
atmospheric characterization; as illustrated by the shrinking tails of the posterior distributions and their narrowing toward the fiducial values with increasing S/N (see
also Tables 2, 3, and 4 for the retrieval results).
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planet radius ( =Å -
+R Rlog 0.22p 0.29

0.25, corresponding to a planet
of 0.84–2.94 Earth radii at the 68% confidence interval) due to
the weaker Mp–Rp correlation, but rules out Neptune-sized
planets (3.865 R⊕) at the 68% credible interval.

3.2. Atmospheric Properties and Surface Conditions Inference

The influence of prior observations on the inference of key
parameters (Rp, fH O2

, psurf, and fc) is shown in Figure 4 for the
vNIR, while retrieval results for the full suite of parameters at
S/N= 20, 15, and 10 are given in Appendix A, in Tables 2, 3,
and 4, respectively. The corresponding posterior distributions
obtained for different S/N are also shown to assess the relative
value of adding more S/N (i.e., integrating longer) against
adding more prior observations. For additional details,
univariate and bivariate posterior distributions of the full suite
of retrieved parameters for observations in the vNIR at
S/N= 20, and for the different scenarios of prior knowledge,
are provided as a corner plot in Figure 5 of Appendix A.

Except for the planet radius and regardless of the S/N value,
prior knowledge of the orbit-related parameters and/or of the
mass does not significantly improve retrieval accuracy and
atmospheric/exoplanet characterization (Figure 4). This con-
trasts with the idea that “knowledge of a planetʼs mass (along
with a knowledge of its radius) is essential [...] to interpret
spectroscopic features in its atmosphere” (National Academies
of Sciences Engineering & Medicine 2018). Only the
cloudiness fraction ( fc) inference is noticeably refined by prior
determination of the mass, and this only when the orbit is
already informed: adding the mass prior to the orbit-related
knowledge shrinks the tail of the posterior and shifts its peak
toward the fiducial value, which allows to constrain fc for
S/N= 15 (green compared to orange area of the middle and
bottom panel of Figure 4 and Table 3).

On the other hand, the top pressure of the cloud deck (pc)
inference is only marginally refined when adding the mass prior
to the already informed orbit at S/N= 10 (Table 4). Its
posterior distribution peaks around the fiducial value for all
scenarios and pc only becomes “constrained” because the
uncertainties are slightly reduced and fall below the 1 log-unit
threshold of our inference accuracy classification when adding
the mass prior (Appendix A).

To understand the role of the mass prior, recall that planetary
mass directly impacts surface gravity, and surface gravity is
inversely proportional to the column abundance of molecules
above a given pressure. As absorption features are roughly
sensitive to the product of the opacity and the column
abundance (which sets the atmospheric transmissivity), one
might expect that gas mixing ratio constraints would correlate
strongly with gravity and mass, such that mass prior
information would translate into much-improved atmospheric
composition constraints. However, Rayleigh scattering optical
depth is directly sensitive to the bulk column abundance of the
atmosphere, thereby helping to prevent a degeneracy between
planetary mass and atmospheric composition. Observations
detecting a Rayleigh scattering slope in the visible thus inform
the bulk column abundance and allow constraints on gas
mixing ratios without requiring prior mass knowledge.
Improving observational quality for spectral features by
increasing the S/N thus yields better constraints on the mixing
ratio whereas prior information on the mass does not.

Without measuring the Rayleigh scattering slope—such as
for observations in the red bandpass—constraints on

atmospheric composition worsen (e.g., Table 5) because of
the degeneracy between planetary mass and atmospheric
column abundance. Note that detecting a Rayleigh scattering
slope is not critically required to constrain gas mixing ratios
absent mass information, as even upper limits on Rayleigh
scattering opacity can provide corresponding upper limits on
the bulk gas column abundance.
Thus, future direct imaging missions should strive to provide

observations at the shortest feasible wavelengths, especially if
the likelihood of prior mass information is uncertain or
unlikely. This is with the caveat that atmospheric hazes could
potentially disrupt the Rayleigh signature. Future work should
investigate how assumptions of background gases and hazes,
and their Rayleigh scattering, impact the atmospheric
characterization-related utility of mass priors.
Alternatively, and while it is always constrained otherwise

for S/N= 20 even without prior constraints (Table 2),
prior knowledge of the orbit only worsens the inference of
the cloudiness fraction. In this scenario, the extension of the
posterior distribution’s tail to lower values (orange area of
the bottom right panel of Figure 4) results in a 68% confidence
interval slightly wider than 0.5 log-units, surpassing our
“constrained” threshold (see Appendix A).
Increasing the S/N systematically improves atmospheric

characterization, as discussed in Feng et al. (2018). This is
illustrated by the fact that the posterior distributions narrow
toward the fiducial values and their tails shrink with increasing
S/N (see also Tables 2, 3, and 4 and the width of the 68%
credible intervals). Here, an S/N of at least 15 is required to
constrain the water vapor mixing ratio ( fH O2

) and the surface
pressure (psurf) becomes constrained from S/N= 20 (Figure 4
and Appendix A).
Overall, apart from prior knowledge of the orbit that allows

for accurate radius determination from reflected-light spectrosc-
opy, these results indicate that orbit and/or mass priors do not
significantly improve retrieval efficiency for Earth-like worlds
and that increasing the S/N is much more beneficial to
atmospheric characterization.
Note that atmospheres significantly differing from Earth-like

worlds, such as those of completely haze/cloud-covered
terrestrials or gaseous worlds without a solid surface, might
have different behaviors for which the applicability of these
results should be further tested. In addition, our constraints may
change as the architecture for HWO is refined and as we attain
a more comprehensive understanding of the noise character-
istics. A yield modeling tool (e.g., Delacroix et al. 2016; Stark
et al. 2019; Morgan et al. 2021) could then be upgraded to
assess the observing strategies that balance orbit determination
against atmospheric characterization in scenarios where mass
priors are provided or not.

4. Conclusion

The detection and characterization of Earth-like planets
orbiting within the habitable zone of Sun-like stars has been set
as a major goal for the next decade of planetary science. With
it, future missions such as the HWO are being designed. Using
rfast in a typical HWO setup, we investigated how prior
knowledge of the planet mass and orbit-related parameters will
affect the characterization of Earth analogs observed in
reflected light.
If the orbit of the planet is known a priori, we found that the

planet radius can be accurately retrieved from reflected light
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observations, regardless of the S/N or spectral coverage
considered here. Combined with prior determination of the
planet mass derived from radial velocity measurements, these
indirect radius constraints would allow for the firm determina-
tion of the planet type and density, thus providing key
information to assess its composition, and interior structure,
and contextualizing the observations in the frame of coupled
interior-atmosphere evolution leading to the observed atmo-
spheric state.

While remaining essential to infer fundamental properties,
prior knowledge of the mass alone or combined with orbit-related
priors does not significantly improve atmospheric characterization
or surface conditions inference. Because Rayleigh scattering
optical depth is directly sensitive to the bulk column abundance
of the atmosphere, detecting a Rayleigh scattering slope or
bounding Rayleigh opacity helps to refine gas mixing ratio
inferences without requiring prior mass knowledge. Future direct
imaging missions should thus strive to provide observations at the
shortest feasible wavelengths, especially if the likelihood of prior
mass information is uncertain or unlikely. Overall, and apart from
radius determination, increasing the S/N of given observations is
more beneficial than adding more prior observations to
characterize an exoplanet and infer its atmospheric composition.
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Appendix A
Retrieval Results for vNIR at Different S/N

To describe atmospheric inference accuracy, we use a
detection strength classification similar to Feng et al. (2018).
Retrieved parameters can be:

1. Tightly constrained (“TC”—for lin-scale prior ranges
only): the width of the 68% confidence interval (i.e., the
range of values within −1 and +1 standard deviation, σ,
from the mean of a Gaussian distribution) is smaller than
±10% of the input value;

2. Constrained (“C”): for log-scale prior ranges, the width of
the 68% confidence interval is contained within 1 log-unit
(i.e., within 1 order of magnitude) for prior ranges
spanning at least 5 log-units, and within 0.5 log-units
otherwise. For lin-scale prior ranges, the width of the
68% confidence interval is contained within 10% of the
full prior range width (Table 1). This is typically the case
for posterior distributions with a marked peak without
tails toward extreme values.

3. Nonconstrained (“NC”): when none of the above con-
ditions are met. This is typically the case when the
posterior distribution is flat across the entire (or nearly
entire) prior range, or has a substantial tail toward extreme
values.

This classification is only relevant to parameters of flat priors. It
is not applicable (“NA”) to parameters known a priori and
artificially constrained using a Gaussian-shaped, informative
prior centered on the truth value (see “Gaussian prior” column
in Table 1).
Tables 2, 3, and 4 provide the retrieval results obtained for

the different prior information available for observations
conducted in the vNIR at S/N of 20, 15, and 10, respectively,
along with the detection strength associated with each retrieved
parameter.
Figure 5 illustrates the marginal univariate (along the

diagonal) and joint bivariate (off-diagonal) posterior distribu-
tions of all retrieved parameters for various scenarios of prior
knowledge, based on observations in the vNIR at S/N= 20.
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Figure 5. Corner plot illustrating the marginal univariate (along the diagonal) and bivariate (off-diagonal) posterior distributions for all retrieved parameters,
considering various scenarios of color-coded prior knowledge for observations conducted in the vNIR at S/N = 20 (see Table 2 for quantitative estimates). The
contours of the 2D posterior distributions denote the 1σ, 2σ, and 3σ levels, encompassing 68%, 95%, and 99.7% of the observed values, respectively. Earth-like input
values are depicted with dashed horizontal and vertical lines.
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Table 2
Retrieval Results Comparison and Associated Level of Constraint for the Different Cases of Prior Knowledge Considered for vNIR and S/N = 20

Parameter Input No Prior Constraint Orbit Constrained Mass and Orbit Constrained Mass Constrained

log fN2
−0.11 −5.1 -

+
3.47
3.28 NC −4.98 -

+
3.50
3.39 NC −4.86 -

+
3.52
3.32 NC −4.81 -

+
3.37
3.15 NC

log fO2
−0.68 −0.77 -

+
0.40
0.35 C −0.77 -

+
0.39
0.37 C −0.82 -

+
0.40
0.37 C −0.81 -

+
0.36
0.35 C

log fH O2
−2.52 −2.57 -

+
0.41
0.38 C −2.58 -

+
0.40
0.43 C −2.62 -

+
0.39
0.38 C −2.66 -

+
0.35
0.40 C

log fCO2
−3.4 −6.53 -

+
2.38
2.47 NC −6.28 -

+
2.46
2.51 NC −6.2 -

+
2.55
2.46 NC −6.54 -

+
2.39
2.68 NC

log fO3
−6.15 −6.22 -

+
0.25
0.30 C −6.18 -

+
0.26
0.33 C −6.19 -

+
0.17
0.15 C −6.35 -

+
0.21
0.28 C

log fCH4
−5.7 −7.44 -

+
1.74
1.70 NC −7.46 -

+
1.70
1.69 NC −7.56 -

+
1.65
1.72 NC −7.43 -

+
1.79
1.52 NC

log psurf 5.0 5.16 -
+

0.41
0.55 C 5.24 -

+
0.40
0.47 C 5.29 -

+
0.39
0.47 C 4.98 -

+
0.40
0.49 C

T 255.0 254.56 -
+

27.08
31.44 C 259.52 -

+
26.66
28.75 C 258.43 -

+
26.53
29.82 C 253.38 -

+
29.94
34.04 C

log Asurf −1.3 −1.28 -
+

0.46
0.38 NC −1.39 -

+
0.40
0.41 NC −1.35 -

+
0.43
0.35 NC −1.17 -

+
0.54
0.40 NC

log Rp 0.0 0.47 -
+

0.47
0.28 NC 0.0 -

+
0.09
0.12 C −0.01 -

+
0.07
0.07 C 0.22 -

+
0.29
0.25 NC

log Mp 0.0 0.8 -
+

1.00
0.75 NC 0.03 -

+
0.62
0.77 NC −0.01 -

+
0.05
0.04 NA −0.0 -

+
0.05
0.04 NA

log Δpc 4.0 2.33 -
+

1.56
1.74 NC 2.59 -

+
1.76
1.80 NC 2.69 -

+
1.84
1.66 NC 2.23 -

+
1.59
1.77 NC

log pc 4.78 4.81 -
+

0.33
0.34 C 4.88 -

+
0.33
0.31 C 4.87 -

+
0.28
0.27 C 4.66 -

+
0.33
0.33 C

log τc 1.0 1.0 -
+

0.12
0.23 C 1.01 -

+
0.11
0.19 C 1.0 -

+
0.10
0.17 C 0.96 -

+
0.11
0.21 C

log fc −0.3 −0.26 -
+

0.29
0.19 C −0.32 -

+
0.32
0.20 NC −0.29 -

+
0.20
0.16 C −0.19 -

+
0.28
0.14 C

a 1.0 3.68 -
+

2.47
3.63 NC 1.0 -

+
0.10
0.10 NA 1.0 -

+
0.11
0.10 NA 2.51 -

+
1.62
2.33 NC

α 90.0 66.28 -
+

45.75
37.97 NC 90.14 -

+
8.89
8.61 NA 90.16 -

+
8.55
9.17 NA 56.84 -

+
38.44
40.83 NC

Note. For log-scale prior ranges, the parameters are constrained (“C”) when the width of the 68% confidence interval (corresponding to the interval between the mean
value −1 and +1 standard deviation) is included within 1 log-unit (i.e., within 1 order of magnitude) for prior ranges spanning at least 5 log-units and within 0.5 log-
units otherwise. For lin-scale prior ranges, parameters are constrained (“C”) when the width of the 68% confidence interval is smaller than 10% of the full prior range
width, and tightly constrained (“TC”) when smaller than ±10% of the input value. Parameters are nonconstrained (“NC”) otherwise, corresponding to either flat
posterior distributions across the entire (or nearly) prior range or to posterior distributions with marked peaks but also substantial tails toward extreme values.
Detection strength is not applicable (“NA”) for parameters known a priori (i.e., Gaussian prior).

Table 3
Retrieval Results Comparison and Associated Level of Constraint for the Different Cases of Prior Knowledge Considered for vNIR and S/N = 15

Parameter Input No Prior Constraint Orbit Constrained Mass and Orbit Constrained

log fN2
−0.11 −4.81 -

+
3.35
3.22 NC −5.19 -

+
3.32
3.36 NC −4.98 -

+
3.38
3.34 NC

log fO2
−0.68 −0.76 -

+
0.52
0.41 C −0.77 -

+
0.53
0.42 C −0.88 -

+
0.52
0.44 C

log fH O2
−2.52 −2.55 -

+
0.45
0.47 C −2.52 -

+
0.51
0.46 C −2.66 -

+
0.47
0.46 C

log fCO2
−3.4 −5.83 -

+
2.88
2.38 NC −6.27 -

+
2.52
2.59 NC −6.19 -

+
2.59
2.54 NC

log fO3
−6.15 −6.2 -

+
0.30
0.36 C −6.16 -

+
0.30
0.35 C −6.21 -

+
0.21
0.19 C

log fCH4
−5.7 −7.24 -

+
1.82
1.70 NC −7.29 -

+
1.82
1.71 NC −7.48 -

+
1.72
1.74 NC

log psurf 5.0 5.17 -
+

0.46
0.56 NC 5.33 -

+
0.49
0.58 NC 5.34 -

+
0.47
0.57 NC

T 255.0 256.76 -
+

34.37
37.68 C 257.52 -

+
36.10
42.33 C 259.35 -

+
35.89
42.71 C

log Asurf −1.3 −1.22 -
+

0.46
0.44 NC −1.38 -

+
0.42
0.42 NC −1.28 -

+
0.45
0.35 NC

log Rp 0.0 0.48 -
+

0.45
0.30 NC 0.01 -

+
0.10
0.13 C −0.02 -

+
0.08
0.08 C

log Mp 0.0 0.92 -
+

1.05
0.71 NC 0.13 -

+
0.73
0.90 NC −0.0 -

+
0.05
0.04 NA

log Δpc 4.0 2.65 -
+

1.74
1.63 NC 2.63 -

+
1.74
1.70 NC 2.58 -

+
1.74
1.71 NC

log pc 4.78 4.8 -
+

0.41
0.41 C 4.89 -

+
0.40
0.40 C 4.89 -

+
0.35
0.35 C

log τc 1.0 1.01 -
+

0.16
0.33 C 1.02 -

+
0.14
0.24 C 1.0 -

+
0.13
0.21 C

log fc −0.3 −0.31 -
+

0.36
0.21 NC −0.33 -

+
0.38
0.23 NC −0.28 -

+
0.24
0.18 C

a 1.0 3.68 -
+

2.53
3.71 NC 1.0 -

+
0.10
0.10 NA 1.0 -

+
0.10
0.10 NA

α 90.0 63.0 -
+

44.11
42.09 NC 89.98 -

+
9.01
8.82 NA 89.66 -

+
8.90
8.51 NA
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Appendix B
Applicability to Other Spectral Coverages

Atmospheric and surface properties inference and detection
strengths are sensitive to the spectral region observed and to the
S/N (e.g., von Paris et al. 2013; Feng et al. 2018; Damiano
et al. 2020; Damiano & Hu 2022; Konrad et al. 2022; Alei et al.
2022a; Robinson & Salvador 2023; Damiano et al. 2023;
Latouf et al. 2023a, 2023b; Young et al. 2024; Mettler et al.
2024). While we will specifically address the influence of the
spectral coverage combined with the S/N on atmospheric
retrievals of Earth analogs in another study, Figure 6 and
Table 5 show the mass–radius posterior distributions and the
retrieval results and detection strenghts obtained for the
different prior information scenarios for observations con-
ducted in a narrower “red” bandpass (λ= [0.87, 1.05] μm, with

a spectral resolving power res= 140; see Figure 1) and a
S/N= 10 (specified at λ= 0.88 μm). They demonstrate that
our conclusions are independent of the spectral coverage
considered. Indeed, for observations in the red bandpass at
S/N= 10, a prior determination of the orbit-related parameters
(i.e., orbital distance and phase angle; orange areas of Figure 6)
yields tight constraints on the planet radius. It is confidently
constrained to be between 0.63 and 1.73 Earth radius
( = -Å -

+R Rlog 0.02p 0.19
0.25 for the 68% confidence interval,

compared to =Å -
+R Rlog 0.44p 0.51

0.35 without any prior knowl-
edge). On the other hand, the mass prior, when added to the
orbit-related priors, does not offer substantial improvements on
the planetary radius constraint ( = -Å -

+R Rlog 0.03p 0.16
0.23,

corresponding to = -
+

ÅR R0.93 ;p 0.29
0.67 green areas of Figure 6),

nor on the inference of other parameters (Table 5).

Table 4
Retrieval Results Comparison and Associated Level of Constraint for the Different Cases of Prior Knowledge Considered for vNIR and S/N = 10

Parameter Input No Prior Constraint Orbit Constrained Mass and Orbit Constrained

log fN2
−0.11 −4.97 -

+
3.50
3.18 NC −5.03 -

+
3.36
3.17 NC −5.05 -

+
3.35
3.36 NC

log fO2
−0.68 −1.02 -

+
0.89
0.59 NC −0.98 -

+
0.98
0.61 NC −1.07 -

+
0.84
0.63 NC

log fH O2
−2.52 −2.6 -

+
0.55
0.65 NC −2.51 -

+
0.67
0.63 NC −2.68 -

+
0.59
0.63 NC

log fCO2
−3.4 −6.1 -

+
2.57
2.90 NC −6.14 -

+
2.68
2.88 NC −6.0 -

+
2.62
2.58 NC

log fO3
−6.15 −6.26 -

+
0.31
0.42 C −6.1 -

+
0.39
0.41 C −6.25 -

+
0.26
0.25 C

log fCH4
−5.7 −7.42 -

+
1.76
1.82 NC −7.27 -

+
1.88
1.91 NC −7.37 -

+
1.82
1.77 NC

log psurf 5.0 5.28 -
+

0.70
0.70 NC 5.46 -

+
0.68
0.79 NC 5.37 -

+
0.55
0.61 NC

T 255.0 262.43 -
+

55.46
64.32 NC 264.67 -

+
56.85
68.99 NC 260.28 -

+
53.81
68.03 NC

log Asurf −1.3 −1.17 -
+

0.55
0.47 NC −1.3 -

+
0.45
0.44 NC −1.13 -

+
0.55
0.35 NC

log Rp 0.0 0.5 -
+

0.45
0.26 NC 0.03 -

+
0.12
0.16 C −0.02 -

+
0.09
0.09 C

log Mp 0.0 0.95 -
+

1.00
0.71 NC 0.48 -

+
0.87
0.92 NC −0.0 -

+
0.05
0.04 NA

log Δpc 4.0 2.55 -
+

1.84
1.93 NC 2.53 -

+
1.76
2.01 NC 2.78 -

+
1.90
1.81 NC

log pc 4.78 4.75 -
+

0.58
0.55 NC 4.93 -

+
0.58
0.57 NC 4.83 -

+
0.49
0.44 C

log τc 1.0 1.05 -
+

0.22
0.49 C 1.07 -

+
0.22
0.54 C 1.04 -

+
0.20
0.50 C

log fc −0.3 −0.32 -
+

0.40
0.24 NC −0.47 -

+
0.47
0.33 NC −0.32 -

+
0.37
0.23 NC

a 1.0 3.84 -
+

2.78
3.46 NC 0.99 -

+
0.10
0.10 NA 0.99 -

+
0.10
0.10 NA

α 90.0 67.34 -
+

44.39
42.43 NC 90.13 -

+
9.15
8.67 NA 89.08 -

+
8.66
8.59 NA
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Figure 6. Mass–radius diagram (center) and marginal univariate posterior distributions (top and right side) for the different scenarios of prior knowledge (same as
Figure 3) considering a narrower spectral bandpass centered on “red” wavelengths (λ = [0.87, 1.05] μm, =res 140; see Figure 1) and S/N = 10. The contours of the
2D posterior distributions denote the 1σ, 2σ, and 3σ levels, encompassing 68%, 95%, and 99.7% of the observed values, respectively. Earth-like input values are
depicted with dashed horizontal and vertical lines. The small images of Earth and Neptune indicate their positions in the diagram. For comparison, mass–radius
relationships representative of different bulk compositions and interior structures are shown (pure H2O assuming 1 mbar surface pressure level at 300 K, Earth-like
rocky: 32.5% Fe + 67.5% MgSiO3, and pure iron; from Zeng et al. 2019). Retrieval results are given in Table 5.

Table 5
Retrieval Results Comparison and Associated Level of Constraint for the Different Cases of Prior Knowledge Considered for the Red Bandpass (Figure 1) and

S/N = 10

Parameter Input No Prior Constraint Orbit Constrained Mass and Orbit Constrained

log fN2
−0.11 −4.54 -

+
3.62
3.34 NC −4.98 -

+
3.36
3.29 NC −5.1 -

+
3.52
3.37 NC

log fO2
−0.68 −5.3 -

+
3.41
3.38 NC −5.47 -

+
3.10
3.60 NC −5.36 -

+
3.18
3.20 NC

log fH O2
−2.52 −1.94 -

+
1.59
1.13 NC −1.64 -

+
1.23
1.03 NC −2.04 -

+
1.15
1.15 NC

log fCO2
−3.4 −5.49 -

+
3.26
3.28 NC −5.02 -

+
3.37
3.23 NC −5.17 -

+
3.23
3.17 NC

log fO3
−6.15 −6.13 -

+
2.71
2.92 NC −6.04 -

+
2.62
2.64 NC −5.88 -

+
2.72
2.60 NC

log fCH4
−5.7 −6.83 -

+
2.18
2.42 NC −6.44 -

+
2.39
2.34 NC −6.66 -

+
2.16
2.39 NC

log psurf 5.0 4.88 -
+

0.94
1.44 NC 4.92 -

+
0.75
0.88 NC 4.73 -

+
0.84
0.82 NC

T 255.0 277.09 -
+

66.23
95.47 NC 286.48 -

+
70.65
92.67 NC 271.11 -

+
67.25
99.45 NC

log Asurf −1.3 −0.62 -
+

0.73
0.44 NC −0.62 -

+
0.67
0.43 NC −0.55 -

+
0.60
0.38 NC

log Rp 0.0 0.44 -
+

0.51
0.35 NC −0.02 -

+
0.19
0.25 C −0.03 -

+
0.16
0.23 C

log Mp 0.0 0.82 -
+

1.06
0.84 NC 0.7 -

+
1.00
0.88 NC −0.0 -

+
0.04
0.04 NA

log Δpc 4.0 2.52 -
+

1.68
1.63 NC 2.29 -

+
1.54
1.66 NC 2.27 -

+
1.56
1.66 NC

log pc 4.78 2.79 -
+

1.83
1.65 NC 2.68 -

+
1.83
1.67 NC 2.69 -

+
1.82
1.55 NC

log τc 1.0 −0.07 -
+

1.99
1.95 NC −0.0 -

+
2.05
1.96 NC −0.25 -

+
1.80
2.05 NC

log fc −0.3 −1.32 -
+

1.19
1.04 NC −1.41 -

+
1.05
1.05 NC −1.53 -

+
0.99
1.07 NC

a 1.0 3.34 -
+

2.37
3.83 NC 1.0 -

+
0.10
0.10 NA 1.0 -

+
0.09
0.10 NA

α 90.0 65.79 -
+

42.59
47.86 NC 89.94 -

+
9.60
9.19 NA 90.14 -

+
8.73
8.33 NA
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